
	

How	to	build	and	test	a	Docker	container	for	your	
ICCMA19	solver	

	
	
	

Install	and	run	Docker	
	
This	document	is	a	step-to-step	guide	for	packaging	your	solver	to	be	submitted	to	International	
Competition	on	Computational	Models	of	Argumentation	(ICCMA	2019)	into	a	Docker	container.	
	
First,	create	a	Docker	Cloud	account	here:	https://cloud.docker.com	
In	the	following	of	this	manual	we	consider	as	DOCKER_ID	the	name	iccma19.	
	
Then,	sign	in	and		

1. Click	on	“Create	Repository”.	

2. Choose	a	name	for	the	Docker	repository	of	your	solver	(e.g.,	“YOUR_SOLVER_REPOSITORY”)	
and	 a	 description	 for	 your	 repository,	 select	 “public”,	 and	 then	 click	 on	 “Create”.	 In	 the	
following,	we	suppose	the	chosen	solver	name	is	conarg.	See	Figure	1.		

	

	
Figure	1:	create	the	repository	for	your	solver.	

	



	
Your	repositories	can	also	be	accessed	by	signing	in	on	Docker	Hub:	https://hub.docker.com/	(same	
login	name	and	password).	See	Figure	2.	
	

	
Figure	2:	container	view	from	https://hub.docker.com.	

	
	
Then,	install	Docker	on	your	machine.	Please	refer	to	the	official	installation	Web	page:	
https://docs.docker.com/install/.	For	instance:	
Linux:	https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce 
	or	https://linuxize.com/post/how-to-install-and-use-docker-on-ubuntu-18-04/	(for	Ubuntu	18.4)	
Windows:	https://docs.docker.com/docker-for-windows/install/	
Mac:	https://docs.docker.com/docker-for-mac/install/	
	
Once	accomplished,	open	a	terminal	window	on	your	machine	and	be	sure	the	Docker	demon	is	
running.	For	example,	run	the	hello-world	container	(not	that	the	all	the	following	docker	commands	
may	need	to	be	run	with	sudo	before	them):	
	
docker	run	hello-world	
		
Then	from	terminal	login	to	your	Docker	account	by	typing:	
	
docker	login	--username=DOCKER_ID	

Where	DOCKER_ID	is	the	name	of	your	Docker	account	(iccma19	in	this	running	example).	You	will	
be	also	required	to	type	your	Docker	password.	The	following	screenshot	shows	this	command	in	
the	terminal.	

	
	



Solver	Dockerization	
	
In	 this	 section	 we	 describe	 how	 to	 create	 a	 Docker	 container	 with	 your	 solver.	 First,	 create	 a	
directory	“SOLVER_DIR”,	somewhere	on	your	machine.	This	directory	needs	to	contain	at	least:	
	

1. All	the	files	needed	by	your	solver;	we	use	“YOUR_SOLVER”	as	the	name	of	the	solver	main	
executable.	

2. The	 runsolver	 tool	 used	 to	 monitor	 the	 execution	 of	 your	 solver	 (see	
http://www.pragmaticsofsat.org/2011/presentations/slides-or.pdf).	

3. A	“wrapper.sh”	shell	script,	which	will	use	runsolver	and	call	the	script	at	bullet	4.	
4. A	“generic-interface-2019.sh”	shell	script,	which	needs	to	be	adapted	in	order	to	implement	

the	 required	 input/output	 interface	 (for	 more	 details	 please	 check	 the	 document	 at	
http://iccma19.dmi.unipg.it/res/SolverRequirements.pdf).		
If	your	solver	natively	implements	such	an	interface,	the	script	at	bullet	3	has	to	directly	call	
your	solver	and	not	this	script.	

5. A	 file	 named	 “Dockerfile”	 (requiring	 Alpine	 Linux	 for	 running	 the	 solver,	 and	 defining	
wrapper.sh,	bullet	3,	as	the	entry-point	of	execution).			
	

When	you	build	an	image	by	using	this	Dockerfile,	the	assembled	package	will	contain	a	minimal	
distribution	of	 Linux	 (Alpine	 Linux:	 https://alpinelinux.org),	 and	all	 the	 files	 at	 bullets	 1-5.	 If	 the	
solver	is	composed	by	several	executables/files,	add	all	of	them	to	this	directory.	Please	try	to	use	
Alpine	 Linux:	 if	 you	 use	 a	 different	 Linux	 distribution,	 e.g.,	 Ubuntu,	 the	 final	 image	 size	 will	
considerably	increase	(from	~10	to	~80	GB).	The	following	screenshot	shows	the	minimal	content	
of	the	“SOLVER_DIR”	directory	(conarg_dir	 in	this	example).	As	running	example,	we	will	build	a	
container	for	conarg,	which	represents	an	instantiation	of	the	“YOUR_SOLVER”	string	in	this	guide.	

Then,	be	sure	to	be	inside	“SOLVER_DIR”,	and	type	

docker	build	-t	DOCKER_ID/YOUR_SOLVER_REPOSITORY		.	
	
where	YOUR_SOLVER_REPOSITORY	is	the	name	of	the	repository	you	have	created	in	this	previous	
section,	and	“.”	(or	alternatively	“./”)	is	the	current	folder	that	contains	all	the	files.	
	
In	this	example,	DOCKER_ID/YOUR_SOLVER_REPOSITORY	will	then	correspond	to	iccma19/conarg.	
This	 command	 builds	 a	Docker	 image	 containing	 everything	 is	 inside	 the	 current	 directory.	 The	
following	screenshot	shows	what	happens	when	this	command	is	executed	to	build	an	image	of	the	
ConArg	solver.	



 
Afterwards,	 check	 if	 the	 image	 "DOCKERID/YOUR_SOLVER_REPOSITORY"	 has	 been	 successfully	
created	(the	result	for	this	running	example	is	shown	in	the	following	screenshot.	
	
docker	images	

	
In	order	to	test	if	your	dockerized	solver	works	fine,	you	first	need	a	second	container	storing	some	
test-frameworks	 from	 ICCMA	 2017.	 The	 container	 iccma19/test_frameworks	 stores	 two	
frameworks:	admbuster_1000.apx	and	admbuster_1000.tgf.	
Please	type	the	following	commands	one	after	the	other	(respectively	retrieving	from	a	repository	
and	then	running	this	second	container):	
	
docker	pull	iccma19/test_frameworks	
 
docker	run	-d	--name	test_frameworks	iccma19/test_frameworks	
	
These	 commands	 pull	 a	 new	 container	 and	 run	 it	 in	 background	 (-d	 option),	 with	 name	
test_frameworks.	
	
Now	 it	 is	 possible	 to	 launch	 your	 dockerized	 solver	 on	 one	 of	 the	 framework	 instances	 in	
test_frameworks;	use,	for	instance,	the	command	



	
docker	run	--volumes-from	test_frameworks	DOCKER_ID/YOUR_SOLVER_REPOSITORY	600	-f	
/test_frameworks/admbuster_1000.apx	-fo	apx	-p	DC-PR	-a	c408	
	
to	 check	 the	 credulous	 acceptance	 of	 argument	 c408	 with	 the	 preferred	 semantics	 on	 file	
admbuster_1000.apx.	 The	 first	 parameter	 after	 DOCKER_ID/YOUR_SOLVER_REPOSITORY	 has	
always	 to	 be	 the	 timeout	 in	 seconds	 (600	 seconds	 in	 this	 example).	 The	 result	 is	 shown	 in	 the	
following	screenshot.	

After	the	timeout	in	seconds,	your	solver	can	be	executed	by	using	a	superset	of	the	options	used	
in	ICCMA	2017	(adding	–m	is	the	only	change):	
	

• -f	fileinput	(the	file	storing	the	framework)	
• -m	fileinput	(the	file	storing	the	modification	on	the	file	passed	with	–f,	used	in	the	dynamic	

track	only)	
• -fo	format	(apx	or	tgf)	
• -p	problem	(EE-PR,	DS-PR,	etc.)	
• -a	additional	(e.g.,	argument	to	be	checked	for	credulous/skeptical	acceptance)	

	
Please	 refer	 to	 http://iccma19.dmi.unipg.it/SolverRequirements.pdf	 for	 detailed	 information	 on	
comments.	 The	 iccma19/test_frameworks	 image	 also	 contains	 two	 modification	 files	
(admbuster_1000.apxm	and	admbuster_1000.tgfm),	in	order	to	test	also	dynamic	solvers.	
Finally,	you	can	push	the	image	to	your	personal	repository:	
	
docker	push	DOCKER_ID/YOUR_SOLVER_REPOSITORY	
	
The	result	is	in	the	following	screenshot:	

	
The	repository	has	been	now	updated	also	on	Docker	Hub	https://hub.docker.com/,	as	Figure	3	
shows.	



	

	
Figure	3:	a	new	pull	for	this	repository.	

	
	
To	pull	it	again	from	your	repository,	first	login	(e.g.,	docker	login	--username=iccma19),	and	then	
use	the	command	
	
docker	pull	DOCKER_ID/YOUR_SOLVER_REPOSITORY	
	

	
A	 link	 to	 a	 public	 repository,	 as	 iccma19/conarg	 in	 this	 example,	 is	 what	 the	
participants	 need	 to	 clearly	 state	 in	 their	 solver	 description	 (submitted	 through	
EasyChair),	and	represents	mandatory	information	for	a	solver	submission.	
	
All	the	files	used	in	this	guide	to	dockerize	conarg	(i.e.,	conarg_dir)	can	be	found	at	the	following	
link:		

• http://iccma19.dmi.unipg.it/add/conarg_dir.zip	
	
The	sample	files	used	to	create	test_frameworks	can	be	found	at:	

• http://iccma19.dmi.unipg.it/add/code/test_frameworks.zip	
	
	
	

	
Further	commands	

	
We	now	report	a	couple	of	useful	additional	commands	you	might	use	to	assemble	your	container.	
In	case	of	any	problem,	please	refer	to	the	official	documentation:	



https://docs.docker.com/engine/reference/commandline/docker/#child-commands	
	
The	first	one	can	be	used	to	locally	remove	a	Docker	image	(fbff44780fae	is	the	image	ID	you	can	
obtain	with	the	docker	images	command,	-f	is	a	force	flag):	
	
docker	rmi	-f	fbff44780fae	
	
In	order	to	list	all	the	containers	running	on	your	machine,	type:	
	
docker	ps	
	
Or	docker	ps	–a	to	get	all	the	containers	(also	stopped	ones).	To	remove	one	of	such	containers,	the	
command	is	(3355386d91cb	is	the	container	ID	you	can	obtain	with	the	docker	ps	command):	
	
docker	rm	3355386d91cb	
	
Finally,	to	stop	the	execution	of	the	container	with	ID	3355386d91cb:	
	
docker	stop	3355386d91cb	


