Argpref:

A SAT-with-Preferences Approach to Ideal Semantics

Alessandro Previti and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland apreviti.research@gmail.com,matti.jarvisalo@helsinki.fi

Abstract

We provide a short overview of the Argpref solver submitted to the ICCMA 2019 competition. Argpref focuses on computation of the ideal semantics. The solver implements a recently proposed SAT-with-preferences approach to computing the backbone of a propositional encoding of admissible sets in order to construct the ideal extension of a given argumentation framework from the backbone.

1 Introduction

We provide a short overview of the Argpref solver submitted to the ICCMA 2019 competition. Argpref focuses on computation of the ideal semantics. The solver implements a recently-proposed SAT-with-preferences [5, 7] based approach [6] to computing the backbone of a propositional encoding of admissible sets of a given argumentation framework, and applies polynomial-time postprocessing [3, 9] to construct the ideal extension from the backbone.

2 Backbone Computation by SAT-with-Preferences

We shortly overview the SAT-with-preferences approach to backbone computation; for more details, see [6].

If a Boolean variable x takes the same value in all satisfying truth assignments of a given conjunctive normal form (CNF) formula F, x is called a *backbone variable* of F; the value xis assigned to in all satisfying assignments is called the polarity of x. If x = 1 (x = 0) in all satisfying assignments, then $x (\neg x)$ is a *backbone literal* of F. The backbone of F consists of the backbone literals of F, or equivalently, of its backbone variables together with their respective truth values.

The following simple observation is central to backbone computation. Given a variable x such that $\tau_1(x) = 0$ and $\tau_2(x) = 1$, where τ_1 and τ_2 are two models of a CNF formula F, neither of the literals x and $\neg x$ are backbone literals of F.

Algorithm 1 outlines in pseudocode the BB-pref approach to computing the backbone of a given CNF formula. A pref-SAT solver allows for finding a best satisfying assignment (model) with respect to a preference ordering over the literals of F [8, 5]. The intuitive idea is to discard a maximal number of non-backbone literals at each iteration. Recall that a backbone literal is a literal that is contained in every model. If we find two models τ_1 and τ_2 such that $x \in \tau_1$ and $\neg x \in \tau_2$, then neither x nor $\neg x$ is a backbone literal. In the context of our algorithm, we use this observation together with preferences in order to discard non-backbone literals from consideration. More specifically, the algorithm maintains a set of backbone literal candidates \mathcal{B} . At any stage during search, literal l is in \mathcal{B} if we have not seen a model with $\neg l$.

The search begins (Algorithm 1, line 2) by computing an arbitrary model τ of the input formula F; i.e., at this stage, no preferences are imposed, and the pref-SAT solver acts like

Argpref

Algorithm 1: BB-pref: Backbone computation using pref-SAT

1	Function BB-PREF(F)	
2	$\tau \gets \texttt{pref-SAT}(F)$	
3	$\mathcal{B} \leftarrow au$	
4	$\mathbf{for}\; l\in \mathcal{B}\; \mathbf{do}$	
5	$setPreference(\neg l)$	
6	while true do	
7	$\tau \gets \texttt{pref-SAT}(F)$	
8	$\mathcal{C} \leftarrow \mathcal{B} \setminus au$	
9	$\mathbf{if}\mathcal{C}=\emptyset\mathbf{then}$	
10	$\mathbf{return}\; \mathcal{B}$	
11	$\mathbf{for}l\in\mathcal{C}\mathbf{do}$	
12	$removePreference(\neg l)$	
13	$\mathcal{B} \leftarrow \mathcal{B} \setminus \{l\}$	

a standard SAT solver. The set of candidate backbone literals \mathcal{B} is initialized to τ (line 3). Then, for each $l \in \mathcal{B}$ the algorithm sets the preference $\neg l \succ l'$ for each $l' \in \text{Lit}(F) \setminus \mathcal{B}'$, where $\mathcal{B}' = \{\neg l \mid l \in \mathcal{B}\}$, via the *setPreference* function (line 5). The idea here is to force a maximal set of literals in \mathcal{B} to be flipped. For each literal l in \mathcal{B} that we are able to flip (in terms of obtaining a model under the modified \mathcal{B}), we know that l and $\neg l$ are not backbone literals. During the main loop, pref-SAT is called to obtain the most preferred model τ w.r.t. the modified \mathcal{B} (line 7). On line 8 information of the flipped literals are extracted and stored in \mathcal{C} . If \mathcal{C} is not empty, we know for each literal $l \in \mathcal{C}$ that neither l nor $\neg l$ is a backbone literal. So for each $l \in \mathcal{C}$ we remove the preferences on l via the *removePreference* function (line 12), and further, we remove l from the set of backbone literal candidates \mathcal{B} (line 13). Otherwise, if \mathcal{C} is empty, it is no more possible to flip any literals in \mathcal{B} . This means that all the literals in \mathcal{B} are backbone literals and the set \mathcal{B} is returned (line 10).

3 Postprocessing to Obtain the Ideal Extension

As explained in [3, 9], the ideal extension of a given argumentation framework (AF) F = (A, R)can be determined via computing the backbone of a propositional encoding of admissible sets, and afterwards applying straightforward postprocessing to the backbone. Specifically, the main computational task (in terms of computational complexity) is to determine the set of *credulously accepted arguments* of F with respect to admissible sets, i.e., the set of arguments $\bigcup adm(F)$. This is achieved by first computing the backbone B of the standard propositional encoding [2]

$$\bigwedge_{(a,b)\in R} (\neg a \vee \neg b) \wedge \bigwedge_{(b,c)\in R} \left(\neg c \vee \bigvee_{(a,b)\in R} a\right)$$

of adm(F), i.e., the collection of admissible sets of F. It then holds that $\bigcup adm(F) = A \setminus \{a \mid \neg a \in B\}$.

As detailed in [9], the ideal extension is then easy to determine from $\bigcup adm(F)$ via a fast polynomial-time algorithm. In short, starting from $S = A \setminus \bigcup adm(F)$, first add to S arguments $x \in \bigcup adm(F)$ such that all arguments adjacent to x are in $A \setminus \bigcup adm(F)$. Then, considering the AF $F' = (S, R_S)$, where R_S is R restricted to S, iteratively remove from S argument which

Argpref

are not defended by S in F'. After at most |S| iterations, this yields the ideal extension of F [3, 9].

4 Implementation

The SAT-with-preferences approach is implemented on top of the MiniSAT 2.2.0 SAT solver [4]. The postprocessing and input-output interface is also integrated into the code of MiniSAT. The approach was shown in [6] to perform well on the ICCMA 2017 benchmarks, outperforming the first-place Pyglaf solver [1].

5 Availability

The solver can be found under the repository elsandp/argpre at

https://hub.docker.com/r/elsandp/argpref.

The tasks supported by Argpref are: **DC-ID**, **SE-ID**.

References

- Mario Alviano. The pyglaf argumentation reasoner. In ICCMA 2017 Solver Descriptions, 2017. http://www.dbai.tuwien.ac.at/iccma17/files/pyglaf.pdf.
- [2] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of arguments. In Proc. NMR, pages 59–64, 2004.
- [3] Paul E. Dunne, Wolfgang Dvorák, and Stefan Woltran. Parametric properties of ideal semantics. Artificial Intelligence, 202:1–28, 2013.
- [4] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. SAT 2003, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.
- [5] Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir. On programs with linearly ordered multiple preferences. In Proc. ICLP, volume 3132 of Lecture Notes in Computer Science, pages 180–194. Springer, 2004.
- [6] Alessandro Previti and Matti Järvisalo. A preference-based approach to backbone computation with application to argumentation. In *Proc. SAC*, pages 896–902. ACM, 2018.
- [7] Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. Solving satisfiability problems with preferences. *Constraints*, 15(4):485–515, 2010.
- [8] Chiaki Sakama and Katsumi Inoue. Prioritized logic programming and its application to commonsense reasoning. *Artificial Intelligence*, 123(1-2):185–222, 2000.
- [9] Johannes Peter Wallner, Georg Weissenbacher, and Stefan Woltran. Advanced SAT techniques for abstract argumentation. In Proc. CLIMA, volume 8143 of Lecture Notes in Computer Science, pages 138–154. Springer, 2013.