
Dredd - A Heuristics-guided Backtracking Solver with

Information Propagation for Abstract Argumentation

Matthias Thimm

Institute for Web Science and Technologies,
University of Koblenz-Landau

thimm@uni-koblenz.de

Abstract

We give a short overview on the Dredd solver for abstract argumentation problems
under grounded, complete, stable, and preferred semantics. The solver implements a DPLL-
like approach to exhaustive search by iteratively trying out possible acceptability values for
the arguments until a valid labelling is found or backtracking is needed. The search order
is guided by domain-independent heuristics that aim at minimising backtracking steps and
information propagation is used to infer acceptability values once certain decisions are
made.

1 Introduction

An abstract argumentation framework AF is a tuple AF = (Arg,→) where Arg is a set of
arguments and → is a relation →⊆ Arg × Arg. For two arguments A,B ∈ Arg the relation
A → B means that argument A attacks argument B.

Semantics are given to abstract argumentation frameworks by means of extensions [3] or
labellings [2]. In this work, we use the latter. A labelling L is a function L : Arg →
{in, out, undec} that assigns to each argument A ∈ Arg either the value in, meaning that
the argument is accepted, out, meaning that the argument is not accepted, or undec, meaning
that the status of the argument is undecided. Let in(L) = {A | L(A) = in} and out(L) resp.
undec(L) be defined analogously. A labelling L is called conflict-free if for no A,B ∈ in(L),
A → B.

Arguably, the most important property of a semantics is its admissibility. A labelling L is
called admissible if and only if for all arguments A ∈ Arg

1. if L(A) = out then there is B ∈ Arg with L(B) = in and B → A, and

2. if L(A) = in then L(B) = out for all B ∈ Arg with B → A,

and it is called complete (CO) if, additionally, it satisfies

3. if L(A) = undec then there is no B ∈ Arg with B → A and L(B) = in and there is a
B′ ∈ Arg with B′ → A and L(B′) 6= out.

The intuition behind admissibility is that an argument can only be accepted if there are no
attackers that are accepted and if an argument is not accepted then there has to be some rea-
sonable grounds. The idea behind the completeness property is that the status of an argument
is only undec if it cannot be classified as in or out. Different types of classical semantics can
be phrased by imposing further constraints. In particular, a complete labelling L

• is grounded (GR) if and only if in(L) is minimal,



Dredd - A Heuristics-guided Backtracking Solver Matthias Thimm

• is preferred (PR) if and only if in(L) is maximal, and

• is stable (ST) if and only if undec(L) = ∅.

All statements on minimality/maximality are meant to be with respect to set inclusion. If L
is a complete/grounded/preferred/stable labelling then in(L) is also called the corresponding
complete/grounded/preferred/stable extension.

Given an abstract argumentation framework AF = (Arg,→) and a semantics σ (either GR,
CO, ST, or PR) we are interested in the following computational problems [8, 4]:

SE-σ: Compute a single σ-extension of AF.

EE-σ: Enumerate all σ-extensions of AF.

DC-σ: For a given argument A, decide whether A is in at least one σ-extension of AF.

DS-σ: For a given argument A, decide whether A is in all σ-extensions of AF.

The Dredd solver supports solving the above-mentioned four computational problems wrt.
to grounded, complete, stable, and preferred semantics. It is a reimplementation of the solver
Heureka [5] and written in the C programming language. It implements the DPLL-algorithm
(Davis-Putnam-Logemann-Loveland) backtracking algorithm from SAT solving [1, Chapter 3]
and uses domain-independent heuristics to guide the search order.

In the remainder of this system description, we give a brief overview on the architecture of
Dredd (Section 2) and conclude in Section 3.

2 Solver architecture

The DPLL-algorithm (Davis-Putnam-Logemann-Loveland) is a standard exhaustive search pro-
cedure that is used—at least in its most general form—throughout all areas of general problem
solving and search, e. g., most modern SAT solvers use this algorithm in one form or the other
[1]. Moreover, there are also solvers for abstract argumentation problems that make use of this
algorithm, see e. g. [5, 7]. Algorithm 1 depicts a very abstract version of this algorithm for the
purpose of determining a single preferred labelling in abstract argumentation (problem SE-PR
from before). As in [7], we use an extended definition of a labelling to allow for arguments
to have an explicit label “unlabelled” (unlab) in order to iteratively define a proper labelling.
In each step of the algorithm, an unlabelled argument is selected (line 4) and a label for this
argument is determined (line 5). If an argument has not been labeled before the label in is
chosen. If the algorithm had to backtrack once before to this step, the label out is chosen, oth-
erwise the label undec is chosen (note that these details are omitted in the abstract depiction
in Algorithm 1). Afterwards the labelling L is updated by setting the label of A to the chosen
label (line 6). Then labels of other arguments are inferred, if possible (line 7). For example, if
A has been labelled in, all arguments attacked by A are labelled out, see also [7]. During this
propagation step, we check also for mislabeled arguments. For example, if A has been labelled
in but already has an attacker labelled undec, we have a contradiction and need to backtrack
(indicated in lines 8 and 9). Backtracking is performed by unlabelling all arguments whose label
had been inferred or explicitly set up-to the first argument where we still have to try another
label. Once all arguments are labeled and we have not found in issue, we return the labelling
as the solution (line 10). Note that, as we always try to label an argument in first, we obtain
a labelling with subset-maximal in-labeled arguments, i. e. a preferred labelling.

2



Dredd - A Heuristics-guided Backtracking Solver Matthias Thimm

Algorithm 1 Abstract backtracking algorithm for determining a preferred labelling

Input: AF = (Arg,→) AAF
Output: L a preferred labelling

1: L← all arguments unlab

2: Stack unlabeledArguments = Arg
3: while unlabeledArguments is not empty do
4: A← unlabeledArguments.pop()
5: lab← nextLabel(A)
6: L← set A to lab
7: L← propagate(A,lab)
8: if mislabeling detected then
9: backtrack

10: return L

A

B

C

D E F

Figure 1: The argumentation framework from Example 1

Example 1. Consider the abstract argumentation framework AF = (Arg,→) depicted in Fig-
ure 1 and assume that arguments are processed in alphabetical order. A labelling L is initialised
by setting the labels of arguments A, . . . ,F to unlab. In a first iteration argument A is se-
lected and labelled in (in line 6 of Algorithm 1). This information is propagated through the
framework (in line 7) resulting in arguments B and D receiving the label out (because they
each have an attacker that is labelled in). Afterwards argument C receives the label in because
its only attacker B has been labelled out. Now we encounter a mislabeling as C attacks the
argument A, which is labelled in. Due to this the algorithm backtracks (in line 9) to its last
decision and labels arguments C,B,D,A again unlab. In the next iteration of the main loop
of the algorithm, argument A is selected again but now labelled out (line 6). Information is
propagated, resulting in B and D receiving label in (because their only attacker is labelled out),
and argument C receiving the label out (because it has an attacker with label in). We found
no mislabeling so the algorithm proceeds with the next iteration and selects E to be labelled in

(in line 5). Information is propagated and argument F is labelled out accordingly. We found
no mislabeling and—as all arguments are labelled—the algorithm terminates and returns the
labelling L with L(B) = L(D) = L(E) = in and L(A) = L(C) = L(F) = out. Observe that L is
indeed a preferred labelling of AF.

Algorithm 1 is used in Dredd for other problems with small variations. For example, tasks
pertaining to stable semantics do not consider the label undec during search. In order to decide
DC-CO the argument under question is initially labeled in and the algorithm returns Yes if a
labelling can be found. As a final example, for DC-ST the algorithm runs twice, first to check
whether stable labellings exist at all and a second time to check whether there is a labelling

3



Dredd - A Heuristics-guided Backtracking Solver Matthias Thimm

where the argument under question is labelled in. Problems that can be solved in polynomial
time (i. e., all tasks pertaining to grounded semantics, as well as SE-CO and DS-CO) are solved
with a dedicated algorithm conceptually identical to the one described in [6].

In order to determine the search order—i. e. the order in which arguments are inserted into
the stack in line 2 of Algorithm 1—Dredd makes use of several domain-independent heuristics,
in the same way as its predecessor Heureka [5]. These heuristics are based on the topological
structure of the argumentation graph and aim at processing those arguments first that are
unlikely to require backtracking steps further along the run of the algorithm. For example,
arguments with high degree are usually processed at an early stage as a mislabeling of those is
(usually) quickly discovered.

3 Summary

We presented Dredd, a heuristics-guided backtracking solver for various problems in abstract
argumentation. At its core, Dredd implements the DPLL-algorithm for general problem solving
and makes use of domain-independent heuristics to determine the search order of arguments.
The source code of Dredd is available at http://taas.tweetyproject.org while an exe-
cutable Docker file can be downloaded from https://cloud.docker.com/u/matthiasthimm/

repository/docker/matthiasthimm/taas-dredd.

References

[1] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[2] Martin W.A. Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2–3):109–145, 2009.

[3] Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77(2):321–358, 1995.

[4] Wolfgang Dvořák and Paul E. Dunne. Computational problems in formal argumentation and their
complexity. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre,
editors, Handbook of Formal Argumentation, chapter 14. College Publications, February 2018.

[5] Nils Geilen and Matthias Thimm. Heureka - a general heuristic backtracking solver for abstract
argumentation. In Proceedings of the 2017 International Workshop on Theory and Applications of
Formal Argument (TAFA’17), August 2017.

[6] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumentation
frameworks. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence,
pages 105–129. Springer Verlag, Boston, MA, 2009.

[7] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Looking-ahead in backtracking algorithms for
abstract argumentation. International Journal of Approximate Reasoning, 78:265–282, 2016.

[8] Matthias Thimm and Serena Villata. The first international competition on computational models
of argumentation: Results and analysis. Artificial Intelligence, 252:267–294, August 2017.

4

http://taas.tweetyproject.org
https://cloud.docker.com/u/matthiasthimm/repository/docker/matthiasthimm/taas-dredd
https://cloud.docker.com/u/matthiasthimm/repository/docker/matthiasthimm/taas-dredd

	Introduction
	Solver architecture
	Summary

