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1 Introduction and System Overview

EqArgSolver is a computer application that can be used to solve the following
enumeration and decision problems in argumentation theory: i) Given an argu-
mentation network 〈S,R〉, to produce one or all of the extensions of the network
under the grounded, complete, preferred or stable semantics; and ii) Given an
argument X ∈ S, to decide whether X is accepted credulously or sceptically ac-
cording to one of those semantics. These tasks are commonly denoted by SE-σ,
EE-σ, DC-σ and DS-σ for σ ∈ {grounded,complete,preferred,stable}.1

The solver follows the general process of computation described in [2], which
requires the decomposition of the framework into SCCs and the arrangement
of these into layers following the direction of attacks. A more comprehensive
description can be found in [5]. Since the last ICCMA (in 2017), EqArgSolver
has gone through a few improvements that we describe in this paper.

EqArgSolver uses probo’s syntax [1]. The problem specification is fully vali-
dated before the computation proceeds. Algorithm 1 gives a high-level overview
of this computation process. Some shortcuts allowing early termination are also
employed but not described here (see [5] for more details).

The framework is first divided into SCCs and arranged into layers according
to Fig. 1 (line 3). The starting point is an initial partial solution labelling all
arguments as undecided (all-und, line 4). The solutions to each layer expand on
the previous layers’ solutions to include the new labelling assignments for the
layer’s arguments.

The composition of a typical layer is shown in Fig. 1. It consists of a block
of trivial SCCs that are mutually dependent and operated on in one step, and
a set of non-trivial SCCs that are independent from each other (and hence can
potentially be computed in parallel). Before working on a layer, each partial
solution generated for the preceding layer is propagated to the layer’s SCCs in
order to condition its arguments’ labels — a process that we call grounding with a
solution. Grounding will fully and uniquely determine the labels of the arguments
in the trivial SCC block (line 9) but will only provide a minimal solution for
the arguments in the non-trivial SCCs. As it turns out, some of the arguments
left undecided in these SCCs by the grounding could potentially be labelled

1 The grounded semantics has exactly one extension so SE and EE, and DC and DS
are equivalent, and only SE and DC are referred.



in in a larger extension (line 12). An algorithm based on the one proposed in
[3] is employed to systematically attempt to include all such arguments in an
extension. This will generate all solutions associated with complete extensions
for the SCC (line 13). These solutions are only partial to the argumentation
framework as a whole and are “horizontally” and “vertically” combined, i.e.,
with solutions for other SCCs within the layer and solutions for previous layers,
respectively (see [2]). This is done is lines 14 and 16 of Algorithm 1, respectively.2

This process is repeated until all relevant layers are processed. The resulting
solutions are then output as extensions by simplying ignoring the arguments
with out or und labels (line 20).

Strictly speaking, the computation of the solutions to the problems in the
grounded semantics does not require the decomposition of the framework into
layers. However, since the decomposition of the framework into SCCs and their
arrangement into layers can be performed very efficiently, the extra decomposi-
tion cost is offset by the performance gain obtained through the computation by
layers in all but a few special cases, and is therefore our preferred choice for all
semantics. Further optimisation here is possible but left as future work.

Input: Graph G
Output: Extensions of G

1 EqArgSolver
2 Read and validate graph G
3 Decompose G into SCCs and arrange them into layers L0, L1, . . . , Lk−1

4 Sols←{all-und}
5 for i← 0 to k − 1 do /* Iterate through layers */

6 newSols←∅
7 foreach f ∈ Sols do
8 λ←GR-ground(Li, f); TSB← trivial SCC block of Li

9 LayerSols←{λ ↓ TSB}
10 S← non-trivial SCCs in Li

11 foreach S ∈ S do
12 possIns← candidate in-nodes of S according to λ
13 SCC-sols←findExtsFromArgs(possIns, S, f, λ ↓ S)
14 Horizontally combine SCC-sols with solutions in LayerSols

15 end foreach
16 Add vertical combination of f with each γ ∈ LayerSols to newSols

17 end foreach
18 Sols ←newSols
19 end for
20 Output Sols

21 end
Algorithm 1: EqArgSolver’s overall processing structure.

2 There are particular variations for the preferred and stable semantics not shown in
Algorithm 1.



2 Functionality and Design Choices

EqArgSolver accepts input graphs using the trivial graph format, which consists
of a text file where arguments are provided as a sequence of argument designa-
tors, one per line, followed by the separator “#” in its own line, followed by a
list of pairs of argument designators, one pair per line, where the first element of
the pair is the attacking argument and the second element is the attacked one.

Each argument in EqArgSolver is assigned an internal identifier (an unsigned
integer) and the argumentation graph is represented internally as a type of en-
hanced adjacency list where each argument node contains vectors attsIn and
attsOut giving, respectively, the list of incoming and outgoing attacks of the
argument.

3 General Improvements Since 2017

The 2019 version offers a number of improvements over the one submitted in
2017:

1. Inefficient behaviour in some exceptional conditions were identified by
analysing the results in the 2017 competition. Alternative solutions able
to deal with these cases were implemented.

2. The overall implementation has moved towards a more object-oriented ap-
proach, with graphs and solutions encapsulated within class objects. This
improves readability and software maintenance.

3. Each argument’s internal identifier is now determined by the argument’s
position within the framework’s topological structure. The numbers in bold
in Fig. 1 give an example. This means the graph has to be first analysed
before the argument’s internal identifers are defined, but it greatly facilitates
the representation of solutions (see next point).

4. Until 2017, solutions were represented using C++’s associative container
unordered map to map argument identifers to the labels in, out, and und.
Due to the growing cardinality of the enumerations of the problems since the
first competition, the use of unordered map became very inefficient in terms
of memory requirements [4]. For this reason, solutions in the 2019 version are
now represented as simple vectors of unsigned integers instead. Although
this seems a trivial modification, its implementation requires a careful design
due to the modular nature by which the solutions are computed. The verti-
cal and horizontal combinations must ensure that all solutions are precisely
juxtaposed. Due to the canonical ordering of all arguments employed, which
as mentioned above satisfies the natural topological order of the framework,
the position of the solution of each SCC within a “global” solution vector is
uniquely determined (see Fig. 1).

4 Docker Repository

The solver is available from the docker respository: odinaldo/eqargsolver.
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Fig. 1. Relationship between partial solutions and layers of the argumentation frame-
work.
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